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Performance of Binary Turbo-Coded
256-ary Pulse-Position Modulation

J. Hamkins1

This article compares the performance of binary turbo codes and Reed–Solomon
(RS) codes in an optical communications system employing high-order pulse-
position modulation (PPM) and an avalanche photodiode (APD) detector. Despite
restriction of the turbo codes to binary alphabets and very simple 4- or 8-state
encoders, they have coding gains 0.5-dB to 0.7-dB higher than equivalent-rate RS
codes when using 256-PPM, employing a typical APD detector, and operating at
an end-to-end bit-error rate (BER) of 10−5. BER curves are given for code rates of
1/3 and 1/2, using a variety of turbo and RS coding methods. The simulations use
an accurate modeling of APD output statistics instead of typical but less accurate
Poisson or Gaussian approximations.

I. Introduction

This article concerns the optical communications system shown in Fig. 1. Information bits are encoded,
modulated using 256-ary pulse-position modulation (PPM), transmitted across an optical channel, and
received by an avalanche photodiode (APD) detector. For each PPM symbol, the APD produces 256 soft
outputs, one for each slot.

A PPM signaling scheme seems to lend itself naturally to a Reed–Solomon (RS) code, whose alpha-
bet size can be easily matched to the PPM order. This results in a one-to-one correspondence between
RS code symbols and PPM symbols. Using a maximum count or threshold hard-decision rule [13], a
single PPM error translates directly into a single RS-code symbol error. Or, by using threshold or
δ-max demodulation [8], an erasure may be declared based on the soft counts in a PPM symbol. This is
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Fig. 1.  A turbo-coded optical communication system.
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sometimes referred to as soft-decision RS coding. Since every RS code is a maximum-distance code, it
might seem that no more powerful code could be found for this application.

However, one disadvantage of an RS code is that its decoder does not make full use of soft outputs.
Even a soft-decision RS decoder does not operate on the soft-demodulator outputs themselves, only on
PPM symbols or erasures. Furthermore, this is an inherent limitation of RS codes, because there is no
practical method known to modify RS codes to make full use of soft information. This is the motivation
for using turbo codes, which already are known to have outstanding performance in other applications
and can operate on the soft counts directly.

The initial appearance of turbo codes [4] launched a whirl of research activity, aimed first at merely
reproducing the astonishing results (see, e.g., [10]), and then at improving, generalizing, and simplifying
the approach (see, e.g., [2,3,5,6,9]). Despite the concerted effort, fundamentally there still is not a complete
theoretical understanding of the relationship between the iterative decoder and the maximum-likelihood
decoder. Consequently, when maximum-likelihood performance bounds have not provided an accurate
estimate of an iterative decoder performance for a particular application or signal-to-noise ratio (SNR)
region, simulation results have been an effective substitute. Without a theoretical bit-error rate (BER)
curve that closely matches simulations, however, it is important for researchers to generate simulations
that accurately model a real system. For this reason, this article uses a very accurate model of APD
detector statistics [11].

This article makes two main contributions: (1) a description of how binary turbo codes can be used
on a nonbinary optical channel with full utilization of soft information and (2) simulation of end-to-end
BER performance for baseline RS codes and binary turbo codes using an accurate statistical model of
the APD detector. Section II describes the components of Fig. 1; Section III describes the turbo decoder;
and Section IV discusses the performance simulations.

II. Turbo-Coded Communication System Components

The primary difficulty of applying a turbo code to an optical channel is that of matching turbo-code
symbols to high-order PPM symbols. The optimal PPM order for low SNR space applications can be
256 or higher [7,16], whereas 256-ary turbo codes are a practical impossibility because turbo-decoding
complexity is exponential in the symbol alphabet size. At the other extreme, binary turbo codes can be
applied to 2-PPM [12], but at the expense of photon efficiency [7] or data rate [16].

As we shall see, the symbol-matching problem is largely a perceived one. Using previously published
turbo-decoding algorithms, binary turbo codes can make full use of 256-PPM soft-demodulator outputs
by suitably initializing a priori probabilities in the turbo decoder. The performance likely would be better
with nonbinary turbo codes, but the binary turbo codes also perform well and represent an improvement
over RS codes.

A. Turbo Encoder

A rate-1/3 turbo encoder is shown in Fig. 2. It consists of two systematic rate-1/2 constituent codes and
an interleaver of length N . The input u = (u1, · · · , uN ) is a block of independent, uniformly distributed
information bits.

In this article, the constituent codes shall be rate 1/2, recursive, systematic convolutional codes. An
example of such a convolutional code with termination as described in [10] is shown in Fig. 3. The transfer
function of the code shown is G(D) = [1, (1+D2)/(1+D+D2)] or, in octal notation, [1, 5/7]. The switch
in Fig. 3 is in position A for the first N time steps and is in position B for the remaining m = 2 steps
needed to return to the all-zeroes state, where m is the memory of the code. Branches in the trellis are
labeled in the usual way as u/x0x1p, where u is the input bit, x0 = u is the systematic output bit, and
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Fig. 2.  A rate-1/3 turbo encoder.
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Fig. 3.  An example of (a) a convolutional code with trellis termination and (b) the corresponding trellis.

x1p is the parity output bit. During the termination phase, there are no input bits; these are marked as
X’s on the trellis branches. The output x0 during this phase is the value of the feedback bit.

The three outputs of the rate-1/3 turbo encoder include the systematic bit, x0, and the two parity
bits, x1p and x2p. The permuted systematic bit from the second convolutional code is not transmitted
across the channel. Thus, a total of n = 3(N + m) bits are transmitted for the rate-1/3 code. Or, the
bits x1p and x2p may be punctured, resulting in a different code rate. For example, by puncturing x1p on
even time steps and x2p on odd time steps, a rate-1/2 code is obtained.

B. Modulator

The simulations use a 256-PPM signaling scheme. The coded bits are grouped into 8-bit sub-blocks
and fed to the PPM modulator, which transforms each sub-block into a pulse in one of 256 locations,
as shown in Fig. 4. For convenience, we assume n is divisible by 8. Because of the nonbinary signaling,
the order in which the coded bits are grouped can affect performance. This will be discussed more in
Section IV.
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Fig. 4.  256-PPM.

C. Optical Channel

The signal-light intensity generated by the transmitting laser is corrupted by background light, as
shown in Fig. 5. The number of photons absorbed by a receiver from an incident optical field of known
intensity is a Poisson-distributed random variable [11]. In this article, for simplicity, we assume perfect
timing synchronization and no spreading of signal photons across slots, which implies that the number
of absorbed photons in each slot is independent of the number of photons absorbed in all other slots.
Note that this is not a crucial assumption in the turbo-coding approach taken in this article—if the
statistical properties of synchronization error and spreading were known, this could be incorporated into
the algorithm. In fact, in systems that exhibit timing jitter or pulse spreading, we believe that the turbo-
coding technique described in this article would display even greater performance improvement over a
decoder that operates on PPM symbols and erasures only.

D. Demodulator

The detection of weak optical signals is enhanced by a low-noise APD detector that amplifies the
electrical current generated by absorbed photons. This is illustrated in Fig. 6, in which the diode symbol
represents the more complicated solid-state components of the APD itself; some of the APD parameters
are shown in block diagram form. Unfortunately, in addition to amplifying the signal, the APD transforms
the simple Poisson distribution of absorbed photons into a much more complicated probability density
function (pdf) at the APD output. This pdf has been accurately approximated by Webb [15]. In
particular, the probability that m secondary electrons are emitted from the APD in response to the
absorption of, on average, n̄ primary photons in a slot, is approximated by Webb as

P (m|n̄) =

exp

− (m−Gn̄)2

2n̄G2F
(
1 + m−Gn̄

n̄GF/(F−1)

)


√
2πn̄G2F

[
1 +

m−Gn̄

n̄GF/(F − 1)

]3/2
(1)

where G is the average APD gain, where F is the excess noise factor given by

F = keffG +
(

2− 1
G

)
(1− keff )

and where keff is the ionization ratio. For values of m close to its mean, Gn̄, Eq. (1) can be approximated
by a Gaussian pdf; however, P (m|n̄) departs greatly from a Gaussian pdf at both tails, which form the
main contribution to error events in decoders [11].

BACKGROUND PHOTONS

SIGNAL PHOTONS TOTAL RECEIVED PHOTONS

Fig. 5.  The optical channel.
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Fig. 6.  The soft APD demodulator.

The APD output is the sum of the charge due to Webb-distributed secondary electron emissions and
Gaussian-distributed amplifier thermal noise, as shown in Fig. 6. The APD output for a 256-PPM signal
consists of 256 soft outputs, each a continuously distributed random variable independent of all other soft
outputs.

Denote the pdf of the soft output of a slot by pS(·) or pN (·), depending on whether it is a signaling slot
or non-signaling slot, respectively. This density is found by using the appropriate value of n̄ in Eq. (1)
and convolving with a Gaussian distribution representing the amplifier thermal noise.

In a conventional implementation, a hard decision is made at the APD output by choosing the slot
with the maximum soft output value. Although intuitive, only recently has this been proven to be the
maximum-likelihood rule for detecting uncoded PPM symbols [14]. Or, one may set a fixed threshold and
generate an erasure for any PPM word that does not have exactly one slot whose soft output is higher
than the threshold [13]. In either case, potentially helpful soft information is lost by a hard decision or
erasure decision.

The turbo-decoder implementation described in this article uses the 256 soft outputs directly, and it
does not make any explicit decision regarding which slot contains a pulse. Instead, an attempt is made to
estimate the information bits themselves using an iterative decoder.

III. The Turbo Decoder

A. Soft-Input, Soft-Output (SISO) Structure

We use a turbo decoder structure and notation as in [2] and as shown in Fig. 7. Although this structure
was designed with an additive white Gaussian noise (AWGN) channel in mind, part of the beauty of this
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P (c ;I )

P (u ;I )
P (u ;O )

Fig. 7.  The turbo decoder.
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structure is that each soft-input, soft-output (SISO) module need not know anything about the channel
in order to operate—its computation is determined completely by the a priori distribution P (c; I) and
knowledge of the code structure.

B. Calculation of the A Priori Distribution

To properly initialize the turbo decoder, we must determine the a priori probability of codewords for
each constituent code.2 Let c = (c0, c1) denote a possible constituent-code codeword. As in [2], we define
P (c; I) = {Pk(c; I)}, for k = 1, · · · , N + m, where for SISO 1,

Pk(c; I) = Pr[constituent codeword (x0, x1p) is c at time k| all soft counts from all symbols] (2)

and for SISO 2,

Pk(c; I) = Pr[constituent codeword (π(x0), x2p) is c at time k| all soft counts from all symbols] (3)

Recall that π(x0) is not transmitted; computing Pk(c; I) requires interleaving the soft counts from the
symbol containing x0. Although there are a total of

n bits× 256 soft counts/PPM symbol
8 bits/PPM symbol

= 8n

soft counts per block, all soft counts in the conditioning in Eqs. (2) and (3) are irrelevant to computing
Pk(c; I) except those from PPM symbols that contain the kth constituent codeword bits. That is, a soft
count does not give information about (x0, x1p) unless it is a soft count from a slot of a PPM symbol
that depends on x0 or x1p.

To compute Pk(c; I), there are two cases to consider. We consider SISO 1 here; the analysis is identical
for SISO 2, except that (xo, x1p) is replaced by (π(x0), x2p).

Case 1. The bits (x0, x1p) that form the kth constituent codeword are grouped into two separate
PPM symbol epochs, s and t.

In this case, let x0 be the lth bit of the sth PPM symbol; let x1p be the mth bit of the tth PPM
symbol; and let y = (y0, · · · , y255) and z = (z0, · · · , z255) denote the soft counts from the two transmitted
PPM symbols. Then

Pk(c; I) = Pk((c0, c1); I)

= P (bit l of sth PPM symbol is c0|y)× P (bit m of tth PPM symbol is c1|z) (4)

=

 ∑
a=(a1,···,a8)

al=c0

P (a|y)

×
 ∑

a=(a1,···,a8)
am=c1

P (a|z)

 (5)

2 By “a priori” probability, we mean that there is conditioning on the receiver decision statistics, but no conditioning on
the turbo code structure, i.e., for the purposes of computing P (c; I), the components of c are assumed to be independent
and uniformly distributed. This is the usual meaning in the context of turbo codes; in other contexts, conditioning on
receiver statistics would be termed a posteriori.
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where Eq. (4) follows by the independence of the soft counts from one PPM symbol to the next, and
where in Eq. (5) a is the 8-bit vector defining a 256-PPM symbol. This is similar to the formulations
given in [2, Section III.D] and [9, Section IV.A].

Case 2. The bits (x0, x1p) that form the kth constituent codeword are grouped into the same PPM
symbol epoch s.

In this case, let x0 be the lth bit of the sth PPM symbol; let x1p be the mth bit of the sth PPM
symbol; and let y = (y0, · · · , y255) denote the set of soft counts from the sth PPM symbol. Then

Pk(c; I) = Pk((c0, c1); I)

= P (bits l and m of sth PPM symbol are c0 and c1, respectively|y)

=
∑

a=(a1,···,a8)
al=c0

am=c1

P (a|y) (6)

In either Case 1 or Case 2, we need to compute the probability that a given 256-PPM symbol
a = (a1, · · · , a8) was transmitted, given its corresponding set of 256 soft counts, y = (y0, · · · , y255).
In the following, p(·) denotes the pdf of a continuous random variable or vector, and P (·) denotes the
probability mass function (pmf) of a discrete random variable or vector. We have

P (a|y) =
p(y|a)P (a)

p(y)
, by Bayes rule

=
p(y|a)P (a)∑255

i=0 p(y|ai)P (ai)
(7)

=
p(y|a)∑255

i=0 p(y|ai)
, since P (ai) = 1/256 for all i (8)

where, in Eq. (7), we have summed over all possible 8-bit symbols, i.e., a0 = (0, · · · , 0), a1 = (0, · · · , 0, 1),
and so on. Each of these symbols is a priori (i.e., without conditioning on soft counts or code structure)
equiprobable.

Each 256-PPM symbol gives rise to one signaling slot and 255 non-signaling slots. By independence
of the soft outputs, we may separate p(y|a) as the product of 255 non-signaling pdfs and 1 signaling pdf:

p(y|a) = pS(ya)
255∏

i=0,i6=a

pN (yi) =
pS(ya)
pN (ya)

255∏
i=0

pN (yi) (9)

where pS(·) and pN (·) are defined in Section II.D, and where we have used a as either an 8-bit vector or
as an index equal to the number it represents in binary. Letting the likelihood function for the ith slot
within the jth PPM symbol be denoted by L

(j)
i = [pS(yi)]/[pN (yi)] (where it is understood that the soft

counts yi are from the jth PPM symbol), and plugging Eq. (9) into Eq. (8), it follows that, for the soft
counts y from the sth PPM symbol,
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P (a|y) =
L

(s)
a

∏255
i=0 pN (yi)∑255

i=0

(
L

(s)
i

∏255
k=0 pN (yk)

) =
L

(s)
a∑255

i=0 L
(s)
i

(10)

Thus, the a priori probability that a given 256-PPM symbol is a, given 256 soft outputs, is the ratio of
the ath likelihood function to the sum of all likelihood functions of all symbol values. This may be used
in Eqs. (5) and (6) to compute the a priori probabilities:

Pk(c; I) =Pk((c0, c1); I) =




∑

a=(a1,···,a8)
al=c0

L
(s)
a

255∑
i=0

L
(s)
i

×


∑
a=(a1,···,a8)

am=c1

L
(t)
a

255∑
i=0

L
(t)
i

 if c0 and c1 are in different
PPM symbols∑

a=(a1,···,a8)
al=c0,am=c1

L
(s)
a

255∑
i=0

L
(s)
i

if c0 and c1 are in the same
PPM symbol

(11)

It is important that Eq. (11) not be substantially harder to compute as compared with the usual
hard decision of choosing the maximum soft output. The computation of the a priori likelihoods Li is
extremely fast with the use of a lookup table for PS(x)/PN (x). Alternatively, Li may be approximated
by a Gaussian pdf of the appropriate mean and variance, with some loss in performance. Since the
denominator of Eq. (11) does not depend on a, it need only be computed once per 256-PPM symbol.

C. Turbo-Decoder Iterations

Given the a priori probability distributions as calculated in the previous subsection, the turbo decoder
operates in the usual way. We briefly review the computation made. Details not given here are contained
in [1,2,4,10].

Computation of the extrinsic information for the information bit u at time k involves taking the
sum, over all edges of the trellis that correspond to that value of u at time k, of the probability of the
starting state of the edge times the probability of the edge according to the a priori distribution times
the probability of the ending state of the edge. Following the notation of [2], the extrinsic information is
given by

Pk(u;O) = Hu

∑
e:u(e)=u

Ak−1[sS(e)]Pk[c(e); I]Bk[sE(e)] (12)

where Hu is a normalization constant that forces
∑

u Pk(u;O) = 1, and where the forward recursion for
the A’s and backward recursion for the B’s [1] are given by

Ak(s) =
∑

e:sE(e)=s

Ak−1[sS(e)]Pk[u(e); I]Pk[c(e); I] for k = 1, · · · , n (13)

Bk(s) =
∑

e:sS(e)=s

Bk+1[sE(e)]Pk+1[u(e); I]Pk+1[c(e); I]for k = n− 1, · · · , 0 (14)

with initial conditions
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A0(s) =
{ 1 s = S0

0 otherwise

and

Bn(s) =
{ 1 s = Sn

0 otherwise

The turbo decoder block diagram is shown in Fig. 7. The steps in the operation of the turbo decoder are
as follows:

(1) Compute the a priori information using the soft APD outputs and Eq. (11).

(2) Let i← 1.

(3) For SISO i, compute the A’s by the forward recursion in Eq. (13).

(4) For SISO i, compute the B’s by the backward algorithm in Eq. (14).

(5) For SISO i, compute the extrinsic information P (u;O) using Eq. (12).

(6) If (i = 1), then interleave the extrinsic information. Otherwise, deinterleave the extrinsic
information.

(7) Let i← 3− i.

(8) Let iteration ← iteration + 0.5.

(9) If (iteration < number of iterations to do), go to Step (3). Otherwise, go to Step (10).

(10) Add extrinsic output from SISO 1 to deinterleaved extrinsic output from SISO 2. Use zero
threshold to determine bit values.

IV. Performance Simulations

Using the method of the previous section, simulations were conducted for turbo-coded 256-PPM and
a typical APD detector, in a shot-noise-limited scenario. Table 1 lists the parameters that were used
in the simulations. The parameters that varied include the code rate, the constituent-code generator
polynomials and the corresponding number of decoding states, and the average number of absorbed
signal photons. Metrics were computed using a multiplicative method, as opposed to an additive method
using additional log() and exp() calls. As the errors occur in clusters, with most blocks containing no
errors and some blocks containing many errors, the simulations were continued until 100 error-containing
blocks were processed (with a maximum of 163 million bits processed per simulation). This usually
implied the simulation of 10,000 or more bit errors.

RS performance was determined by simulating the soft counts using a program to generate Webb
deviates, computing the resulting PPM symbol-error rate (SER) when the maximum-likelihood rule is
used [14], and using a formula for the performance of RS code based on that SER [13]. Erasures were
not considered.

Figures 8 and 9 show the performance of coded 256-PPM as a function of input SER for coding rates
of 1/3 and 1/2, respectively. Parts (a) and (b) of each figure show the same simulation data in two
different ways. Since the turbo decoder does not make an explicit determination of PPM symbols, the
input SER technically is not defined for turbo codes; the SERs used in the plots are those that would have
occurred had a maximum-likelihood rule been used to make PPM symbol decisions. The three curves for
turbo codes represent the 4-state noninterleaved PPM, 4-state interleaved PPM, and 8-state interleaved
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Table 1. Parameters used in turbo-coded PPM simulations.

Parameter Value

Turbo encoder

Overall code rate 1/3 or 1/2

Encoders

Generator 5/7 or 17/15 (octal)

Constraint length 3 or 4, respectively

Interleaver length 16,382

Block size 16,384

Channel type PPM

PPM modulator

PPM order 256

Slot duration 2.000× 10−8

Optical channel

Average signal photons/slot 20 to 30

Average background photons/slot 10

APD

Gain 80

Ionization ratio 0.007

Noise temperature 300

Noise equivalent bandwidth 2.500× 107

Load resistance 1.466× 105

Extinction ratio ∞
Bulk leakage current 4.000× 10−14

Surface leakage current 2.000× 10−9

Turbo decoder

Iterations 10

Metrics Multiplicative method

Conventions exp(−1000) = 0

exp(1000) = Inf

Maximum bits to process 163,820,000 (10,000 blocks)

PPM simulations. By noninterleaved PPM, we mean that the bits at the output of the turbo encoder are
grouped into 8-bit blocks directly and PPM modulated. This order is

(x0, x1p, x2p, x0, x1p, x2p, · · · , x0, x1p, x2p)

For the interleaved PPM, the order of the bits has been partially randomized as follows. Starting with a
bit order of

(x0, · · · , x0, x1p, · · · , x1p, x2p, · · · , x2p)

the interleaver π—the same interleaver used in the turbo encoder itself—is used to permute each third of
the block. That is,
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Fig. 8.  The performance of rate-1/3 codes for 256-PPM with an APD
detector as a function of (a) input SER and (b) signal photons per
pulse.

(x0, · · · , x0)→ (π(x0), · · · , π(x0))

(x1p, · · · , x1p)→ (π(x1p), · · · , π(x1p))

(x2p, · · · , x2p)→ (π(x2p), · · · , π(x2p))

The effect of the interleaver before the modulator is to spread out related bits into different PPM symbols.
Thus, when chance yields misleading soft information, the effect is spread across the entire block, instead of
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Fig. 9.  The performance of rate-1/2 codes for 256-PPM with an APD
detector as a function of (a) input SER and (b) signal photons per
pulse.
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clustered together. Reusing the same interleaver saved memory in running the simulations. Using a
different, longer interleaver potentially could yield better results, but this was not investigated.

From Figs. 8 and 9, we may calculate the coding gain. Unlike the AWGN channel, whose performance
can be characterized with a single SNR parameter, there are multiple parameters that affect performance
on an optical channel. As such, the coding gain will depend on each of these parameters and no general
statement can be made of the coding gain of one coded system over another. The coding gain must be
stated as the gain for a particular choice of operating parameters.

We define the coding gain as the savings in signal photons per information bit for one system over
another. At an output BER of 10−5 and using the parameters given in Table 1, the coding gain of
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the rate-1/3 binary turbo code is 10 log10(27.3/23.3) = 0.7 dB higher than the (256,85) RS code. The
rate-1/2 binary turbo code has a coding gain 10 log10(30.6/27.3) = 0.5 dB above that of a (256,127) RS
code.

V. Conclusions

For code rates of 1/2 and 1/3, binary turbo codes outperform the RS codes for PPM signals received
by a soft APD detector. At an output BER of 10−5, the improvement in coding gain is about 0.5 dB
for rate-1/2 codes and 0.7 dB for rate-1/3 codes. While this article was limited to these two rates and
specific operating parameters, we expect similar performance improvements for other code rates.

The computational complexity of the turbo-decoder implementation is modest, involving relatively
simple 4- or 8-state trellises. The interleaver necessitates large storage capacity, but turbo-coding research
is developing algorithmic methods to use interleavers; perhaps such a technique can be used in this
application to alleviate the need to store the interleaver.

There are a number of areas for improvement in the turbo codes and in which future research is
warranted:

(1) Code rate optimization. This article has made little attempt to determine the optimal code
rate, because only rates 1/2 and 1/3 were considered. Overall, the rate-1/2 codes had better
performance in terms of required photons per information bit. We expect that the optimal code
rate is between 1/2 and 7/8.

(2) Nonbinary turbo codes. Nonbinary turbo codes can be expected to improve over the binary
turbo codes presented here. There is a limit to the alphabet size because of computational
complexity considerations, but 4-ary or 8-ary turbo decoders are still tractable and might
significantly improve performance.

(3) Modulator interleaver design. We may optimize the design of the interleaver that feeds the
modulator. No attempt was made to optimize it in this article.

(4) Imperfect symbol synchronization or pulse spreading. In these scenarios, the soft counts are
likely to be smeared across multiple slots. If this behavior can be modeled mathematically, it
is an ideal scenario in which to take full advantage of the soft counts using a turbo decoder. In
addition, turbo codes can be combined with trellis-coded modulation.
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